Co-tabulations, Bicolimits and Van-Kampen Squares in Collagories

نویسنده

  • Wolfram Kahl
چکیده

We previously defined collagories essentially as “distributive allegories without zero morphisms”. Collagories are sufficient for accommodating the relation-algebraic approach to graph transformation, and closely correspond to the adhesive categories important for the categorical DPO approach to graph transformation. Heindel and Sobociński have recently characterised the Van-Kampen colimits used in adhesive categories as bicolimits in span categories. In this paper, we study both bicolimits and lax colimits in collagories. We show that the relation-algebraic co-tabulation concept is equivalent to lax colimits of difunctional morphisms and to bipushouts, but much more concise and accessible. From this, we also obtain an interesting characterisation of Van-Kampen squares in collagories.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Van Kampen diagrams are bicolimits in Span

In adhesive categories, pushouts along monomorphisms are Van Kampen (vk) squares, a special case of a more general notion called vk-diagram. Other examples of vk-diagrams include coproducts in extensive categories and strict initial objects. Extensive and adhesive categories characterise useful exactness properties of, respectively, coproducts and pushouts along monos and have found several app...

متن کامل

Van Kampen Colimits as Bicolimits in Span

The exactness properties of coproducts in extensive categories and pushouts along monos in adhesive categories have found various applications in theoretical computer science, e.g. in program semantics, data type theory and rewriting. We show that these properties can be understood as a single universal property in the associated bicategory of spans. To this end, we first provide a general noti...

متن کامل

Characterizing Van Kampen Squares via Descent Data

Categories in which cocones satisfy certain exactness conditions w.r.t. pullbacks are subject to current research activities in theoretical computer science. Usually, exactness is expressed in terms of properties of the pullback functor associated with the cocone. Even in the case of non-exactness, researchers in model semantics and rewriting theory inquire an elementary characterization of the...

متن کامل

Being Van Kampen is a universal property

Colimits that satisfy the Van Kampen condition have interesting exactness properties. We show that the elementary presentation of the Van Kampen condition is actually a characterisation of a universal property in the associated bicategory of spans. The main theorem states that Van Kampen cocones are precisely those diagrams in a category that induce bicolimit diagrams in its associated bicatego...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • ECEASST

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2010